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Inverse Trilateration - A Positional Coal Seeking
Algorithm for a Swarm of Autonomous Drones

Steven J. Novotnty!
Department of Physics, US Adr Force Academy, Colorado

steven. j.umroingibgail. comn

138 8§ Sherwood Glen, Monument, CO

Abstract

In this paper [ describe a solution to the reverse GPS problem and its application
to positional goal secking for a swanmn of autonomous drones. GPS uses known
positions and corresponding ranges from multiple beacons to a single location
to determine the coordinates of that location. In contrast, this work uses range
measurements from a single target or beacon (of unknown position) to a group
of cross-communicating autonomous objects. These autonomous objects, using
estimates of their own relative (not absolute) locations, estimated ranges to one
another, and range data to the goal will converge on that goal. The convergence
algorithm is Lased on a linear least-squares approach thus creating minimal
demands for on-board computational resources. An exumple applieation is used
to demonstrate the robustness of the approach by using a simple range finider
based on assumed transmitter power and a simple attenuation model. The
results show the algorithm and convergenee are nob sensitive to errors in the
assumed attenuation.
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# Distribution A: Appreved for public release; distribution is unlimited.

Preprint submi to Jowrnal of Rubotics and A Systern June 18, #2014

1. Inverse Trilateration

The Global Positioning System (GPS) uses a geometric process called trilat-
eration to determine the position of a receiver. Most simply stated, trilateration

is a process of determining a position by considering the i tion of multiple

spheres. The minimum mumber of spheres required to detennine a three dimen-

slomal position is four, The intersection of two spl i ing they int t)

will create a circle; the third is required to reduce the set of possible points to
two; awd the fourth reduces the set to a unique point.

The GPS wses a sophisticated constellation of satellites that transmit posi-
tion and timing data continnously. Each satellite carries an atomic elock and

regularly updated ephemeris data, The GPS has proven itself immensely bene-

fictal in innumerable civilisn and military applications. In ideal circumstances,
positions for all objects at all times can be determined and known with high
aceuracy through GPS. In ideal circumstances, the work described in this paper
wonld be imnecessary,

In many situations GPS is unavailable or unreliable, This eondition can
be caused Ly geographical obstacles such as those encountered in mowmtain-
ous terrain, The condition may also oeeur through man-made effects, such as
intentionally-induced GPS denied environments. In these situations, alternative
methods must be invoked-ones that do not rely upon absolute position,

The problem described in this paper is different from other work on nav-
igating i a GPS-denied environment, such as Simultancons Localization and
Mapping or SLAM. SLAM is the process of sensing an unknown environment
using available sensor data to develap Loth the pose of the drone and a map
of the environment [1]. This work is concerned only with goal seeking: finding
the simplest way for a swarm of autonomons drones to converge upon an object

with no requirement for sbsolute position.

1.1. The Reverse GPS Problem
The reverse GPS problem considers a single beacon transmitting a signal

from which a range (but not position) can be determined. These range mea-
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Figure 1: Geometry for a group of four drones and a single (goal) beacon. ; :
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surements can then be used by a group of autonomons entities who share data e

about thelr own estimated position relative to one another and their estimated 1,5 N

(o =5 M = 25) + gy — v ) — w5) = 5{1'}' +riy— i) {5)

range to the beacon. Figure 1 illustrates the geometry of the problem, with the

real world 3D problem reduced to 2D for simplicity. If we now choose any one of the n drones, we can develop a system of

» The objective for cach drone is to determine a velocity vector which will move equations for that particular drone-the one which will be attempting to find a
it from its present location fowards the goal. The necessary velocity vector for = solution. As such, equation 5 represents a set of n— 1 linear equations for drone
each drone is determined through the following: i For the case of drone 1, equation § becomes

1. its own estimated position, (o, 2, 1, 4 4
I [ (ge =)z — 1) + {9y = in M — ) = E(P'f'“‘]z;: - 1)

[

. its own estimated range to the goal beacon, 7y oo, a b
(e = i)y —20) + (g = i)l —wi) = E(J'; + Vg =1a)

. the estimated positions of all other drones in the swarm, (25 05) ()
4. the estimated range of each drone to the goal beacon, 7y

(80 = #0)m = 1) + (g = 1) = 1) = 2loE + 12, = #2)
Based on figure 1 the distance between drone i and drone j is given by o T = E Ty T Ve T ) = A

rig =yl (@i — P+ (= 502 1 s : :
i i) ) Optimization technigues for improving GPS aceuracy have been studied
The distance between drone 1 and the goal is given by = through least squares and non-linear least squares approaches nsing the same

formulation given above [2]. However, the goal in the previous work was to find

= 4 f (e — 200+ (g — w)? (2) an absolute 3D position, Le. g and gy (and g:). The goal in this work is to



find the difference in positions between the unknown beacon and each individ-
ual drone, fe. (g = =) and (g, — ), from which drone commands can be

generated.

L2, Least Syuares Solution

The set of equations developed in the previous section represent an overde-
termined, lincar system of equations. Because the distances ri and vy and
all positions are only approximate the problem lends itself to a least squares
solution. For this problem, I will express the set of equations with the form
A X — Db =0 where

Ty —® Y2 — 1ot 4+, —d)
; Trom oo 2
Ly =¥ ya—h oy = T 2(r +rig —r3)
Vi ) ] ¥ - ] 1 b= | # II'.’ 3 7
B : Sy — 4 :
Tn =T Yo i+, —d)

The least squares approach requires us to minimize the swm of the squares of
the residuals, i.e

VF(X)=0 (8)

where F(X) = [|[AX = b||? = (AX —b)T(AX = b). This leads to a solution in
the form of
X=(ATA) 'ATb (0]

2. Simulations of an n-drone system using least squares optimization

Each drone was modeled as a single entity, with the ability to transmit to
other drones its own estimated position and its measured range to the bescon.
Each drone uses these values to find a solution from equation 9. The solution is
converted to a velocity (or command) by normalizing the difference vector X,
ie. v = X/||IX|| and assuming a time step of At = 1. Each drone objeet then

advanees using a simple proportional controller,

ndrones X = (g, = 2,9, — ) (m) o, (m) ay (m) [l |

5 (962, 002) 6108 S31.2 0 G087
10 (069, 003) 248.4 171.9  a02.1
15 (987, 987) 145.0) 1478 2106
20} (984, Do8) 1317 106.7  169.5

Table 1: Least squares solution for drone 1 as a function of #, the mumber of
trones in the swarm. The beacon is located at a position (1000,1000) m and
drone one is at (0,0}, The uncertainty, o is the standard deviation after 20,000

caleulations. The uncertainty in all position and range measurcinents is 1.0 m.

In all conceivable scenarios, uncertainty will be present in every range and
position measurement. Therefore, the aceuracy of the solutions given in equa-

tiom 9 and the uncertainty should be affected by the mmber of drones, n.
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Figure 2: Starting positions for §, 10, 15, and 20 drone swarms.

This result is shown in table 1, by assuming an uncertainty of 1.0 m and a

goal beacon placed at & location of (1000, 1000) m. The swarm is distribited



in a uniform, rectangnlar pattern, with the a-positions and yepositions spaced
5 m apart. Drone one is always placed at (0,0) and all drones start with posi-
tive coordinates. The starting configurations for each simulation are shown in
figure 2. The data in the table represent the results after 20,000 simulations.

The asymimetry in the 2 and y standard deviation represents the asyminetry
in the initial deployment position of the swann with respect to the beacon. This
can be seen most easily be examining the results for the fifteen-drone Swarm,
in which the ratio of the standard deviations in 2 and # is closest to one, This
swarm is the most symmetric with regards to the direction to the goal, as seen
in 2.

Figure 3 shows the first twenty time steps for a swarm of fftcen drones
towards a goal beacon located at (75,75) m. Figure 3a depicts perfect range
and position measurements and figure 3b depicts an uneertainty of 1.0 m in

range and position measurements, simulated by g ian noise centered on the

actual position and with ¢ = 1.0 m.
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Figure 3: Simulation results for a swarm of 15 drones, Figure 3a has zero
uncertainty in range and position measurements; Figure 3b has uncertainty in

range and position measurements of 1.0 m

2.1, A simple range-finder model
Obtaining a measurement of range from a given drone to the goal beacon

Is not a simple problem, particularly if @ system designer wishes to avoid a

s

transponder for the task. Most range finding systems, such as Distance Measur-
ing Equipment (DME) used on aircraft require a matual exchange of information
between the goal beacon and the aerial vehicle.

One scenario for determining distance to an object of unknown location is
to conskder a transinitter of known power, a receiver, and # solution based on
an assumed attenuation model. For free space propagation, we can write an

equation for loss as

F
L{dB) = ll]lug% =10log (% (1)

where Py is the transmitted power, P is the receiver power, [ s the frequency
of the transmitted signal, ¢ is the speed of light, and d i the distance between
the receiver and transmitter.

An alternative expression, one that includes the effects of scatiering and

other attenuation, is given as

L{dh) = 10log % =404 Wnlogd + Loger (11)
"

where n is a term that ceptures scattering effects, Ly captures other losses
in the path, d is measured in km, and the frequency is assumed to be 2.45 GHz,

The values for i and Layer are scenario dependent [5]. For typical scenarios,
the scattering coefficient n can range from 2 (representing free space propaga-
tion} to 4 (representing a heavily wooded area), and Ly can range from
(free space) to 30 (heavily wooded area). Using these assumptions about scat-
tering, attemsation, and transmitted power, a receiver can find a distance by
measuring received power.

It should be noted that 1 am not making any claims on the practicality of

implementing the above model for range determination. It is my goal to show

that the approach discussed in the previous sections is robust enough to handle

incomplete or insceurate range calenlations using this generalized model,
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Figure 4: Simulation results for a swarm of 15 drones, Range to the beacon is
determined based on assnmptions in signal attenuation. Figure 4a shows the
correct assumption for both attenuation and scattering; Figure 4b assumes free
space propagation when scattering and attenvation are actually through lightly
wooded areas; Figure de assumes froe space propagation when scattering and

attenuation are actually through heavily wooded areas.

it

3. Simulations and Results

The progression of a ffteen-drone swarm was caleulated for several scenarios

in which the wrong assumptions were made by the autonomons vehicles, e

the vehicles assumed a free space propagation instead of a heavily wooded area.
The results are shown in figure 4.
In each case, the swarms converged on the Leacon. As Logger, the constant

loss term, increased, the swarm showed signs of dis wersing as it approsched the

goal. The important observation, however, 1s the swarmn still converged, The
dispersion is understarulable, as the constant loss term will eause the swarm to
think the beacon s farther away than it actually is, even when the swarm has

reached the goal

2.1, Discussion
The work in the previous sections shows the robustness of the algorithm,

but many technieal issues have not been directly addressed.

Integrution of sensor data. With the asswnption of s GPS-denied environment,
position (as well as post) is determined through integration of commands and
augmented by data from on-board sensors such as aceelerometers amd EVFO-
seopes. If not executed well, this approach can quickly lead to unaceeptable
and increasing errors in position. More advanced techninues, such as using on-
board cameras, are addressed In other works [4) [3] and will not be discussed
here. T have assumed that the drone is capable of maintaining positional data

with the accuracy stated for cach simulation.

Minimal spucing. The algorithm T deseribod included no mechanism for ensur-
ing the swann does not converge to @ single point, That safeguard, as with all
other details of autonomous navigation, were assumed to be a part of a base-
line control algorithm. A constrained least squares approach was considered for
handling issues such as spacing, but was refected to minimize complexity in the

algorithin.
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4. Conclusion

The algorithm presented in this paper demonstrates an important capability
available though the use of multiple, autonomous drones: the ability to use
multiple cntities, each possessing limited data, to solve a complex problem
Though this approach was conceived with quadrotors in mind, it certainly can

be expanded to other antonomous vehicles and problems.
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